All Equations Derived in Timeline-Relative Quantum Collapse (TRQC): Canonical Derivation and Mathematical Foundation (CDMF) Paper found HERE
1 Collapse Field Math
\[\Psi_c(x^{\mu})\]

Primary field whose dynamics govern collapse behavior in TRQC. (CDMF Section 1.1 pg. 6)

2 Observer Field Math
\[O^{\mu}(x^{\nu}), \quad O^{\mu}O_{\mu} = 1\]

Unit timelike vector field encoding observer flow and orientation. (CDMF Section 1.2 pg. 6)

3 Collapse Time Function Math
\[\tau(x^{\mu}), \quad \frac{d\tau}{ds} > 0\]

Scalar “time terrain” ordering collapse layers in TRQC. (CDMF Section 1.3 pg. 7)

4 Canonical TRQC Lagrangian Math
\[ \mathcal{L}_{\text{TRQC}}=\tfrac12 \nabla^\mu\Psi_c\nabla_\mu\Psi_c - V(\Psi_c,\tau) + \lambda(O^\mu O_\mu - 1) + \gamma O^\mu \nabla_\mu\Psi_c + \beta R^\tau_{\mu\nu} + \tfrac12\kappa R[g^{\text{eff}}_{\mu\nu}] \]

Master density combining collapse, observer, terrain, and effective curvature terms. (CDMF Section 2.2 pg. 13)

5 Collapse Potential Math
\[V(\Psi_c,\tau) = \frac{\alpha}{4}(\Psi_c^2 - \Psi_0^2)^2 + S(\tau)\Psi_c\]

Bistable collapse potential with terrain-induced bias.

6 Euler–Lagrange Equation Math
\[ - \Box \Psi_c + \alpha(\Psi_c^2 - \Psi_0^2)\Psi_c + S(\tau) - \gamma \nabla_\mu O^\mu = 0 \]

Canonical Euler–Lagrange equation for the collapse field \(\Psi_c\), derived from the TRQC Lagrangian under metric signature \(({-}{+}{+}{+})\).

7 Collapse PDE (3+1D Form) Math
\[ \frac{\partial^2 \Psi_c}{\partial t^2} - \nabla^2 \Psi_c + \alpha(\Psi_c^2 - \Psi_0^2)\Psi_c + s_0 \tau_0 = 0 \]

Collapse field equation in flat 3+1D spacetime, derived from the canonical Euler–Lagrange equation under comoving observer and uniform terrain assumptions.

8 Collapse Curvature (Scalar) Math
\[R_\tau = \frac{\partial^2 \tau}{\partial x^2}\]

Scalar curvature associated with terrain-time.

9 Projection Operator Math
\[g^{\text{eff}}_{\mu\nu} = \Pi_{\text{QEC}}[\Psi_c, O^\mu, \tau]\]

Defines effective metric from projection-compatibility conditions.

10 Effective Metric Math
\[g^{\text{eff}}_{\mu\nu} = \eta_{\mu\nu} + \alpha_1 \nabla_\mu\Psi_c\nabla_\nu\Psi_c + \alpha_2\nabla_\mu\tau\nabla_\nu\tau\]

Projection-compatible metric derived from collapse field gradients and terrain structure; governs emergent curvature in TRQC.

11 Termination Surface Math
\[\Sigma^{\tau}_{(O)}: \ \nabla\Psi_c \to 0 \ \ \text{or} \ \ |\partial^2\tau| > \theta_{\text{shear}}\]

Surface where projection halts or terrain shear becomes too large.

12 Collapse Horizon Condition Math
\[\nabla\Psi_c \to 0 \ \Rightarrow \ \text{projection fails}\]

Defines projection failure via vanishing collapse field gradient.

13 Collapse Redshift Mapping Math
\[\tau(z) = \tau_0 (1 + z)^{-p}\]

Links cosmological redshift to structural time depth in TRQC; predicts redshift flattening as collapse resolves.

14 Functional Variations Math
\[\frac{\delta g^{\text{eff}}_{\mu\nu}}{\delta \Psi_c},\quad \frac{\delta R}{\delta \Psi_c}\]

Variational derivatives of metric and curvature with respect to the collapse field.

15 Hamiltonian Density Math
\[\mathcal{H} = \tfrac12 (\partial_t\Psi_c)^2 + \tfrac12 (\nabla\Psi_c)^2 + V(\Psi_c,\tau) - \gamma O^\mu \nabla_\mu\Psi_c\]

Energy density of the collapse field including observer coupling.

16 Projection-Aligned Frame Math
\[\chi^\mu(x) = O^\mu(x)\]

Coordinate frame aligned with the observer vector field.

17 Smoothed Projection Operator Math
\[\psi(x) = \int_{\mathcal{N}_x} \Psi_c(x')\, \eta_\varepsilon(\tau(x') - \tau(x))\, \eta_\varepsilon(\chi^\mu(x') - \chi^\mu(x))\, d^3x'\]

Neighborhood-averaged projection of the collapse field.

18 Collapse Energy Density Math
\[\rho(x) = \nabla_\mu\Psi_c \nabla^\mu\Psi_c\]

Local energy density of the collapse field.

19 Born Deviation Functional Math
\[\Delta_i = \int_{S_i} (|\psi(x)|^2 - \rho(x))\, d^3x\]

Quantifies terrain-induced deviations from Hilbert-space probability in decoherence-permitted regions.

20 Terrain Curvature Tensor Math
\[R^\tau_{\mu\nu} = \nabla_\mu \nabla_\nu \tau - \tfrac12 \nabla_\mu\tau\, \nabla_\nu\log(\nabla^\sigma\tau\nabla_\sigma\tau)\]

Second-derivative structure of terrain-time scalar.

21 Collapse Path Integral Math
\[\int \mathcal{D}\Psi_c\, \mathcal{D}O^\mu\, \mathcal{D}\tau \ e^{iS[\Psi_c, O^\mu, \tau]}\]

Constrained integral over collapse, observer, and terrain fields.

22 Terrain-Normalized Probability Integral Math
\[P_i = \int_S |\Psi_c(x)|^2\, d^3x\]

Probability in a projection-compatible slice normalized to terrain conditions.

23 Collapse Probability Operator Math
\[\hat{P}_{\text{collapse}} = \int_D w(x;O^\mu,\tau)\, |\Psi_c(x)|^2\, d^3x\]

Observer-weighted projection probability operator defined over terrain-compatible domains.

24 Collapse Brightness Function Math
\[\mathcal{B}(\tau) = \int_{\Sigma_\tau} L(x)\, d^3x\]

Brightness across a structural-time slice.

25 Collapse Luminosity Rate Math
\[\frac{d\mathcal{B}}{d\tau} = -\kappa\, \frac{dM}{d\tau}\]

Links change in brightness to change in mass over structural time.

26 Photon–Mass Collapse Coupling Math
\[\frac{dN_\gamma}{d\tau} = -\alpha\, \frac{dM}{d\tau}\]

Relates photon emission rate to collapse-driven mass change.

27 Collapse Termination Condition Math
\[\lim_{\tau \to \tau_\infty} \mathcal{B}(\tau) = 0 \ \Rightarrow\ \left.\frac{d\tau}{ds}\right|_{\mathcal{B}=0} = 0\]

When brightness vanishes, structural time flow ceases.

28 Entropy–Brightness Divergence Math
\[\dot{S} > 0, \quad \dot{\mathcal{B}} < 0, \quad |\dot{\mathcal{B}}| \propto (\nabla_\mu \tau \nabla^\mu \tau)^{-1}\]

Entropy rises as brightness falls, with rate set by terrain-time gradient magnitude.

29 Collapse Termination Theorem (Repeat) Math
\[\int^\infty \frac{dM}{d\tau}\, d\tau = M_0 < \infty \ \Rightarrow\ \mathcal{B}(\tau) \to 0\]

Finite total mass loss implies brightness vanishes at termination.

30 Black Hole Feedback Functional Math
\[\mathcal{F}_{\mathrm{BH}}(x) = \delta R^{\tau}_{\mu\nu}\]

Feedback from curvature variations near collapse cores.

31 Brightness Gradient Field Math
\[\nabla_\mu \mathcal{B}(x^\mu)\]

Spatial variation of brightness on terrain-time slices.

32 Brightness-Modulated Projection Math
\[\Pi_{\text{QEC}}[\Psi_c, O^\mu, \tau] \to \Pi_{\text{QEC}}[\Psi_c, O^\mu, \tau, \mathcal{B}(\tau)]\]

Projection operator extended by dependence on brightness function.

33 Collapse Clock Functional Math
\[T_{\text{structural}}=\int_{\tau_0}^{\tau}\mathcal{B}(\tau')\,d\tau'\]

Defines an internal clock from accumulated brightness over structural time.

34 Collapse Layer Entropy Math
\[S_{BH} = k \,\log\!\left(\frac{\tau_{\text{core}} - \tau_0}{\Delta \tau}\right)\ \ \text{or}\ \ \sim\ k \,\log\!\left(\frac{A}{\Delta \tau_{\min}}\right)\]

Entropy scaling for collapse layers and boundaries.

35 Collapse Curvature Emission Math
\[\mathcal{G}(x) = \nabla^{\mu} R^{\tau}_{\mu\nu}\]

Emission-like term from gradients of terrain-time curvature.

36 Collapse Entropy Boundary Math
\[S_{BH} = \int_{\partial D_{BH}} k \,\log\!\left(\frac{\tau_{\text{core}} - \tau_0}{\Delta \tau}\right)\, d^3 x\]

Boundary integral form of collapse entropy.

37 Collapse Feedback Integral Math
\[\Psi_c^{(n+1)}(x) = \Psi_c^{(n)}(x) + \int_{\Sigma_{BH}} K(x,x')\, \mathcal{F}_{BH}(x') \, d^3 x'\]

Iterative update from black-hole feedback over a surface.

38 Collapse Recursion Operator Math
\[\mathcal{R}\,\Psi_c^{(n)}(x) = \Psi_c^{(n)}(x) + \int K(x,x')\left(\delta R^{\tau}(x') - \alpha\,\mathcal{B}(\tau)\right)\,\Psi_c^{(n)}(x)\, d^3 x'\]

Operator form of feedback update including curvature and brightness terms.

39 Restart Threshold Math
\[\mathcal{F}_{BH}(x)\cdot \|\nabla \tau\| > \lambda \,\log\!\left(1+\Delta S\right)\]

Condition to restart recursion based on feedback and entropy change.

40 Collapse Entropy Budget Math
\[S_{\text{usable}} = \int_{D_{\text{QEC}}} \log\!\left(\frac{\tau_{\text{core}} - \tau_0}{\Delta \tau(x)}\right)\, d^3 x\]

Integrated usable entropy over the projection-compatible domain.

41 Recursion Convergence Math
\[\Delta_{\text{rec}} = \int_{\Sigma_{\tau}} \left|\Psi_c^{(n+1)}(x) - \Psi_c^{(n)}(x)\right|^2\, d^3 x\]

Measures convergence of successive recursion steps in collapse field updates.

42 Curvature Smoothing Math
\[\overline{R}^{\tau}_{\mu\nu}(x) = \int G(x,x')\, R^{\tau}_{\mu\nu}(x')\, d^3 x'\]

Smooths terrain-time curvature using a kernel convolution.

43 Time Dilation Lag Math
\[\left(\frac{d\tau}{ds}\right)_{\text{lagged}} = \frac{\sqrt{\nabla^{\mu}\tau\,\nabla_{\mu}\tau}}{1 + \beta\, R(x)}\]

Structural time flow slowed by curvature, producing lag relative to proper time.

44 Collapse Emission Spectrum Math
\[\mathcal{S}(\omega,x) = \frac{\omega^{3}}{\exp\!\left(\frac{\omega}{\gamma\,\mathcal{B}(\tau) + \delta\,R(x)}\right) - 1}\]

Spectral distribution of collapse emission influenced by brightness and curvature.

45 Born Deviation (Energy Density) Math
\[\Delta_i = \int_{S_i} \left(|\psi(x)|^2 - \nabla_{\mu}\Psi_c\,\nabla^{\mu}\Psi_c\right)\, d^3 x\]

Deviation from Born rule using energy density as comparator.

46 Collapse–Coupled Fermion Lagrangian Math
\[\mathcal{L}_f = \bar{\psi}_f \left(i\gamma^{\mu} D_{\mu} - Y_f \,\|\nabla \tau\|\right)\psi_f\]

Fermion sector Lagrangian with terrain-time gradient coupling.

47 Yukawa Overlap Functional Math
\[Y_f = \frac{2\pi\, A_f A_n\, \sigma_f \sigma_n}{\sigma_f^{2} + \sigma_n^{2}} \,\exp\!\left[-\frac{(x_f - x_n)^{2}}{2(\sigma_f^{2} + \sigma_n^{2})}\right]\]

Defines effective Yukawa coupling from mode overlaps.

48 Master Lagrangian — \( \mathcal{L}_{\mathrm{Master}} \) Math
\[ \mathcal{L}_{\mathrm{Master}} = \mathcal{L}_{\mathrm{collapse}} + \mathcal{L}_{\mathrm{observer}} + \mathcal{L}_{\mathrm{terrain}} + \mathcal{L}_{\mathrm{fermion}} + \mathcal{L}_{\mathrm{gauge}} + \mathcal{L}_{\mathrm{feedback}} \]

Complete TRQC Lagrangian; sum of all sector contributions. Expand sub-items for definitions.

48a Collapse Core Terms — \( \mathcal{L}_{\mathrm{collapse}} \) Math
\[\mathcal{L}_{\mathrm{collapse}} = \tfrac{1}{2}\,\nabla^{\mu}\Psi_c\,\nabla_{\mu}\Psi_c - V(\Psi_c,\tau)\]

Core kinetic term for the collapse field plus its potential.

48b Observer Terms — \( \mathcal{L}_{\mathrm{observer}} \) Math
\[\mathcal{L}_{\mathrm{observer}} = \gamma\,O^{\mu}\nabla_{\mu}\Psi_c + \lambda\,(O^{\mu}O_{\mu} - 1)\]

Couples observer field to collapse dynamics and enforces unit norm constraint.

48c Terrain Curvature Term — \( \mathcal{L}_{\mathrm{terrain}} \) Math
\[\mathcal{L}_{\mathrm{terrain}} = \beta\,R^{\tau}_{\mu\nu}\]

Contribution from terrain-time curvature tensor.

48d Fermion Sector — \( \mathcal{L}_{\mathrm{fermion}} \) Math
\[\mathcal{L}_{\mathrm{fermion}} = \bar{\psi}_f\!\left(i\gamma^{\mu}D_{\mu} - Y_f\,\|\nabla\tau\|\right)\!\psi_f\]

Fermion dynamics with terrain-time gradient coupling.

48e Gauge Sector — \( \mathcal{L}_{\mathrm{gauge}} \) Math
\[\mathcal{L}_{\mathrm{gauge}} = -\tfrac{1}{4}F^{a}_{\mu\nu}F^{a\mu\nu} + \xi\,\mathrm{Tr}\!\big([O^{\mu},A^{a}_{\mu}]^2\big)\]

Gauge field kinetic term plus observer–gauge alignment penalty.

48f Curvature Feedback Terms — \( \mathcal{L}_{\mathrm{feedback}} \) Math
\[\mathcal{L}_{\mathrm{feedback}} = \delta\,R[g^{\mathrm{eff}}] + \eta\,\nabla^{\mu}R^{\tau}_{\mu\nu} + \tfrac{1}{2}\,\kappa\,R\!\left[g^{\mathrm{eff}}_{\mu\nu}\right]\]

Effective-curvature variations and terrain-curvature gradient terms.

49 Collapse Mode Overlap Matrix Math
\[Y_{ij} = \int \bar{\psi}_i(x)\, \Psi_c(x)\, \psi_j(x)\, d^{4}x\]

Overlap of fermion modes with the collapse field mode functions.

50 Gauge Transport Condition Math
\[[O^{\mu}, A^{a}_{\mu}] = 0,\qquad \nabla^{\mu} A^{a}_{\mu} \ll \nabla^{\mu} \Psi_c \,\nabla_{\mu} \Psi_c\]

Alignment of gauge fields with observer field; small divergence relative to collapse gradients.

51 Collapse-Layer RG Flow Math
\[\alpha_i(\tau) = \left\langle F^{a}_{\mu\nu} F^{a\mu\nu} \right\rangle_{\Sigma_{\tau}}\]

Renormalization group flow of collapse-layer parameters via gauge field invariants.

52 Fermion Mass via Overlap Math
\[m_f = \lambda \int \Psi_c(x) \, |\psi_f(x)|^{2} \, d^{4}x\]

Fermion mass generated from overlap with collapse field distribution.

53 Collapse-Time Quantization Rule Math
\[[\hat{\tau}(x), \hat{H}] = i\hbar\]

Canonical commutation relation between structural time operator and collapse Hamiltonian.

54 Collapse-Sourced Stress-Energy Tensor Math
\[T^{\mu\nu}_{\text{eff}} = -\frac{2}{\sqrt{-g}}\, \frac{\delta \mathcal{L}_{\text{TRQC}}}{\delta g^{\text{eff}}_{\mu\nu}}\]

Effective stress-energy tensor sourced by collapse-sector Lagrangian.

55 Collapse-Time Commutation Structure Math
\[[\hat{\tau}(x), \hat{\Pi}_{\tau}(y)] = i\hbar\, \delta^{3}(x-y)\]

Canonical commutation relation between structural time and its conjugate momentum.

56 Collapse-Time Functional Schrödinger Equation Math
\[i\hbar\, \frac{\delta}{\delta \tau(x)}\, \Psi[\Psi_c,\tau,O^{\mu}] = \hat{H}_{\text{collapse}}(x)\, \Psi[\cdot]\]

Functional Schrödinger equation in structural time representation.

57 Collapse-Time Green’s Equation Math
\[\mathcal{D}_{\tau}\, G(x,x') = \delta^{4}(x-x'), \quad \mathcal{D}_{\tau} \equiv \Box + \frac{\partial V}{\partial \Psi_c} - \gamma\, \nabla_{\mu} O^{\mu}\]

Green’s function equation for collapse dynamics in structural time formalism.

58 Collapse-Time Quantization Theorem Math
\[\tau_n(x) = n\,\Delta\tau + \varepsilon(x), \quad [\hat{\tau}(x), \hat{H}] = i\hbar, \quad [\hat{\tau}(x), \hat{\Pi}_{\tau}(y)] = i\hbar\,\delta^3(x-y)\]

Eigenstate quantization of structural time with canonical commutators.

59 Observer Field Commutation Relation Math
\[[\hat{O}^{\mu}(x), \hat{\Pi}^{(O)}_{\nu}(y)] = i\hbar\, \delta^{\mu}_{\nu}\, \delta^{3}(x-y), \quad \hat{O}^{\mu}\hat{O}_{\mu} = 1\]

Canonical commutation relation for observer field and its conjugate momentum with unit norm constraint.

60 Projection-Compatible Gauge Commutator Math
\[[\hat{A}^{a}_{\mu}(x), \hat{\Pi}^{b\nu}(y)] = i\hbar\, \delta^{ab} \delta^{\nu}_{\mu} \delta^{3}(x-y)\]

Canonical commutation relation for gauge fields in a projection-compatible frame.

61 TRQC Hilbert Space Tensor Structure Math
\[\mathcal{H}_{\mathrm{TRQC}} = \mathcal{H}_{\Psi_c} \otimes \mathcal{H}_{\tau} \otimes \mathcal{H}_{O^{\mu}} \otimes \mathcal{H}_{\mathrm{gauge}} \otimes \mathcal{H}_{\mathrm{fermion}}\]

Full Hilbert space as a tensor product of collapse, terrain-time, observer, gauge, and fermion sectors.

62 TRQC Path Integral over Constrained Fields Math
\[Z_{\mathrm{TRQC}} = \int_{\mathcal{C}_{\mathrm{TRQC}}} \mathcal{D}\Psi_c\, \mathcal{D}\tau\, \mathcal{D}O^{\mu}\, \mathcal{D}A_{\mu}\, \mathcal{D}\psi_f \ \exp\left[i \int d^{4}x\, \mathcal{L}_{\mathrm{Master}}\right]\]

Full path integral of TRQC over all constrained fields and sectors.

63 Collapse-Compatible Mode Expansion Math
\[\hat{\Psi}_c(x) = \int \frac{d^{3}k}{(2\pi)^{3}} \left[ a_k\, u_k(x) + a_k^{\dagger} \, u_k^{*}(x) \right]\]

Mode expansion of the collapse field operator in a projection-compatible basis.

64 Fermionic Field Anticommutation Structure Math
\[\{\hat{\psi}^{\alpha}_f(x), \hat{\psi}^{\beta\dagger}_f(y)\} = \delta^{\alpha\beta} \delta^{3}(x-y)\]

Canonical anticommutation relations for fermion fields of flavor \(f\).

65 Gauge Field Commutation Structure Math
\[[\hat{A}^{a}_{\mu}(x), \hat{\Pi}^{b\nu}(y)] = i\hbar\, \delta^{ab} \delta^{\nu}_{\mu} \delta^{3}(x-y)\]

Canonical commutation relations for gauge fields in TRQC.

66 Curvature Quantization Functional Math
\[\hat{R}^{\tau}_{\mu\nu}(x) = \hat{F}[\Psi_c(x), \tau(x)]\]

Operator form of the terrain-time curvature tensor as a functional of collapse field and terrain-time scalar.

67 Observer Path Integral Structure Math
\[Z_{O^{\mu}} = \int_{\mathcal{C}_{O}} \mathcal{D}O^{\mu}(x)\, \delta(O^{\mu}O_{\mu} - 1)\, \exp\left(i\int d^{4}x\, \mathcal{L}_{\text{observer}}\right)\]

Path integral over observer field configurations constrained to unit norm.

68 Unitarity Constraint on Collapse Layers Math
\[\frac{d}{d\tau} \int_{D_{\mathrm{QEC}}} |\Psi[\Psi_c, \tau, O^{\mu}]|^{2} \ \mathcal{D}\Psi_c = 0\]

Probability conservation condition over projection-compatible domain.

69 Collapse-Time Heisenberg Evolution Math
\[\frac{\delta \hat{A}(x)}{\delta \tau(x)} = \frac{i}{\hbar} \left[ \hat{H}_{\text{collapse}}(x), \hat{A}(x) \right]\]

Heisenberg-picture evolution of operator \(\hat{A}\) in structural time representation.

Canonical Theorem Stack

1 Projection Convergence Theorem Theorem
\[ \lim_{\varepsilon \to 0} (\nabla_\mu \Psi_c)(\nabla^\mu \Psi_c) = |\psi(x)|^2 \]

In the zero-smoothing limit, collapse field gradients converge to the Born probability density.

2 Collapse Kernel Solution Lemma Theorem
\[ \Psi_c(x) = A\,e^{-r^2/2\sigma^2} \ \Rightarrow\ \Box\Psi_c = -m^2\Psi_c - 2\lambda \Psi_c^3 \quad \text{iff} \quad 3\sigma^2 = m^2 + 2\lambda A^2 \]

Gaussian collapse kernels solve the nonlinear wave equation under the given width–mass–coupling relation.

3 Terrain Stability Theorem Theorem
\[ \mathcal{L}_\tau = -\alpha (\nabla_\mu\tau \nabla^\mu\tau)^2 - \beta (\Box\tau)^2 \]

Stable terrain-time dynamics require quartic gradient and curvature-squared terms.

4 Threshold Dynamics Lemma Theorem
\[ \theta_{\mathrm{collapse}} = m^2 + 2\lambda \psi^2, \quad \theta_{\mathrm{shear}} = \frac{3}{L^2} \]

Collapse and shear thresholds in terms of field amplitude and characteristic length.

5 Collapse Gradient Arrow Theorem Theorem
\[ \nabla^\mu \Psi_c \nabla_\mu \Psi_c > 0 \ \Rightarrow\ \frac{d\tau}{ds} > 0 \]

Positive collapse gradient norm enforces forward progression in structural time.

6 Collapse–Curvature Feedback Identity Theorem
\[ \frac{\delta R[g^{\mathrm{eff}}_{\mu\nu}]}{\delta \Psi_c} \neq 0 \]

Effective curvature depends functionally on the collapse field.

7 Collapse Redshift Limit Theorem Theorem
\[ z_{\mathrm{threshold}} = \left(\frac{\tau_0}{\tau_{\mathrm{crit}}}\right)^{1/p} - 1, \quad z > z_{\mathrm{threshold}} \ \Rightarrow\ D_{\mathrm{QEC}} = \varnothing \]

Above a redshift threshold set by terrain time, no projection-compatible domains exist.

8 Observer Horizon Theorem Theorem
\[ \nabla_\mu O^\mu \le \theta_{\mathrm{collapse}} \ \text{or}\ |\partial^2\tau| > \theta_{\mathrm{shear}} \ \Rightarrow\ x \in \Sigma^\tau_{(O)} \]

Observer horizons occur when collapse divergence is below threshold or terrain shear exceeds limits.

9 Decoherence Domain Lemma Theorem
\[ x \in D_{\mathrm{QEC}} \ \Leftrightarrow\ \|\nabla\Psi_c\| \ge \theta_{\mathrm{collapse}},\ \ |\partial^2\tau| \le \theta_{\mathrm{shear}} \]

Characterizes projection-compatible regions by collapse gradient and terrain shear limits.

10 Collapse Projection Orthogonality Lemma Theorem
\[ O^\mu \nabla_\mu \Psi_c = 0 \]

Collapse field is orthogonal to observer field flow in projection-compatible domains.

11 Collapse Path Integral Well-Formedness Theorem
\[ \int \mathcal{D}\Psi_c\, \mathcal{D}O^\mu\, \mathcal{D}\tau\ e^{iS[\Psi_c, O^\mu, \tau]} < \infty \]

The TRQC path integral converges over the collapse, observer, and terrain fields.

12 Structural Time Theorem Theorem
\[ \frac{d\tau}{ds} > 0 \ \text{ along integral curves of } O^\mu \]

Structural time increases monotonically along observer worldlines.

13 Collapse Termination Theorem Theorem
\[ \text{If } \int \frac{dM}{d\tau} \, d\tau = M_0 < \infty,\ \text{then}\ \mathcal{B}(\tau) \to 0 \ \text{as} \ \tau \to \tau_\infty \]

Finite total mass loss implies brightness vanishes as structural time approaches its limit.

14 Projection Collapse Limit Theorem Theorem
\[ \nabla^\mu\tau \nabla_\mu\tau \to \infty \ \Rightarrow\ D_{\mathrm{QEC}} = \varnothing \]

Infinite terrain-time gradient eliminates projection-compatible domains.

15 Observer Horizon Theorem (Dual Condition Form) Theorem
\[ \nabla_\mu O^\mu > \theta_{\mathrm{collapse}} \ \text{or} \ |\partial^2\tau| > \theta_{\mathrm{shear}} \ \Rightarrow\ x \in \Sigma^\tau_{(O)} \]

Observer horizons also occur when collapse divergence exceeds threshold or terrain shear exceeds limits.

16 Gauge Group Selection Theorem Theorem
\[ G_{\mathrm{TRQC}} = SU(3)_C \times SU(2)_L \times U(1)_Y \]

The TRQC framework selects the Standard Model gauge group.

17 Collapse-Generated Chirality Theorem Theorem
\[ \text{Asymmetry from }\nabla^\mu\tau \ \text{splits projection bandwidths for } \psi_L \ \text{and} \ \psi_R \]

Collapse-induced terrain-time gradients cause left/right-handed mode asymmetry.

18 Flavor Multiplicity Theorem Theorem
\[ N_{\mathrm{flavor}} = 3 \quad\text{given}\quad \mathcal{T}_{\mathrm{Yukawa}} \ \text{stable under}\ D_{\mathrm{QEC}} \]

Projected Yukawa topology admits exactly three stable decoherence-preserving fermion classes.

19 Born Rule Emergence Theorem Theorem
\[ P = \int_D w(x; O^\mu, \tau)\,|\Psi_c(x)|^2\, d^3x, \quad \Delta_i = \int_{S_i} \left(|\psi(x)|^2 - \rho(x)\right) d^3x \]

TRQC derives Born probabilities and deviation measures from first principles.